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Model validation using mismatched filters
YORAM BARAMT

The problem of testing a given model for an observation sequence using residuals
obtained from a sub-optimal filter is treated. Tests on cross-record sections of multiple
data records are defined and the necessary distributions for computing critical regions
and the tests’ power for given model alternatives are derived.

1. Introduction

This paper is concerned with the problem of validating a linear model,
using estimation residuals obtained from mismatched (suboptimal) filters.
Such filters are often used in practice when, for reasons of implementation,
the filter must be of lesser complexity than the model assumed for the system.
The problem of testing mismatched filter residuals differs in several ways from
that of testing matched filter residuals (e.g. Box and Jenkins 1970, Mehra and
Peschon 1971). 'While matched filter residuals are uncorrelated, mismatched
filter residuals are generally correlated. In addition, mismatched filter resi-
duals cannot be made stationary via normalization by the associated covariance
matrix as matched filter residuals. The problem of testing mismatched filter
residuals is solved in this paper by using multiple data records. Such records
are often available from repeated experiments or from multiple system
operations, and are particularly useful when the data obtained from a single
experiment is statistically insufficient.

Statistical analysis on multiple data records is particularly attractive
because cross-record residual samples are, normally, independent and identically
distributed. It is only necessary that the driving and measurement noise
sequences corresponding to different experiments be independent and normally
distributed. Statistical inference from multiple data records has been pre-
viously suggested by Goodrich and Caines (1979), who considered linear
system identification, and by Baram (1980) who considered model validation
from matched filter residuals.

Mean, covariance and correlation tests on cross-record sections of the data
are defined. The residuals are projected onto the principal directions of the
covariance and correlation matrices in order to efficiently transform the matrix-
valued information in the corresponding sample matrices into scalar test
statistics. This defines another point of departure from the matched filter
case as the correlation matrix for matched filter residuals is the identity matrix.
The test statistics are written as quadratic forms in normal variables so that the
distribution theory of such forms can be used to compute critical regions for the
tests and the tests’ power for specified model alternatives.
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2. Test statistics

Consider a family of observation records y, ,€R?, i=1,..., M, j=1,..., N,
where ¢ is the record index and j is the sampling (time) index. It is assumed
that the statistical model of the observations is the same for all the data records.
Let M denote the model assumed for the observations (the model to be tested)
and let M denote another model for the observations used for‘estimation pur-
poses (the model in the estimator). We shall also have a third model 2,
representing the true system generating the observations when the tested
model M does not hold. Let E! denote expectation with respect to the
probability measure induced by the model M'for =0, 1, 2. The observation
residuals are given by

7ot =Yt = EMYis¥s,0 0 Uiy 1=1,2 (2.1)

when the observations are generated by M° and M2, respectively. Let us
denote

—EYr,;} 1=0,2 (2.2)
Pil=EY(r, ;—m;)(r;; —m;)T} 1=0,2 (2.3)

and
CYj, k)= EY(r; p—m)(r; p—mp)T} 1=0,2 (2.4)

where Er; ;}=EYr, ;'}, ete.

The computation of m,!, P;* and C(j, k) for linear models is described in the
appendix. In the sequel the 1ndex I will be dropped when the analysis apphes
equally to I=0 and I=2

For a cross-record sectlon j the sample mean is computed as

The mean test will employ the statistic
|75l =75" 7 (2.6)

Let V(j, k) denote the matrix whose columns are the principal directions
of C%j, k). Note that C(j, k) may be singular. In general V(j, k) may be
obtained by singular valued decomposition of C(j, k), (e.g., Golub and Reinach
1970). The residuals are projected onto the yth principal direction of C(j, k)
by the operation

pi,; V5, k) =aV TV (], k)1 ;— 7] (2.7)

where @) is a vector whose o’th component is given by

1 a=y
a,V = (2.8)
0 as#vy

The correlation test statistic may be defined as the sample correlation of the
projected residuals
M

C(Y)Ll(k _i Z P‘L,] ‘7 k) (Y)(j,k) (2.9)
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Note that when the tested model is correct
lim c¢?)(j, k)= A" (2.10)

M-
where A? denotes the yth eigenvalue of C(j, k). When the eigenvalues are
ordered by their magnitudes, the sample correlation ¢¥(j, £) can be expected
to be more accurate (i.e., less affected by round-off errors) for y =1 than for
y=2 ete. This also translates the multi-variate information contained in the
sample correlation matrix into a smaller number of scalars, ordered by their
significance. Another correlation test statistic may be defined as

S
= % i,k (2.11)

Note that
1 M

5, k=77 .

(Ti,j*fj)T(Ti,L—TL) tr O(j, k) (2.12)
where C(j, k) is the residual sample correlation matrix. This is due to the fact
that the trace of C(j, k) is preserved under the similarity transformation
Vi, k)CG, )V, k).

Statistics for testing the instantaneous covariance are obtained as special
cases of the above statistics, by taking j=k. Let ¥, be the matrix of principal
directions of P;. Then projecting the residuals on the yth principal direction

_ pi ;N =aV(r; ;= 7)) (213)
we have the covariance test statistic

1 M .
) = . ) 2.14).
¢ i El Pij ( )

When the tested model is correct we have

lim ¢;M=A® (2.15)
M—a
where A is the yth eigenvalue of P;. The covariance test statistics may also
be defined as

D
2 ) (2.16)

As in the case of the sample correlation we have
’ 1 M

Cs=—
I .ﬂ_/[ 'L'gl

(T,L"j—Fj)T(’ri’j—TJ) =tr P'

; (2.17)

where P; is the spample covariance matrix.

3. Test statistics distribution

The test statistics presented in the previous section will now be written as
quadratic forms in normal random variables. Well established techniques for
computing the distributions of such forms can then be used to derive the
necessary distributions.
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For a cross-record section j let us define

é;= (Tl,jT: T2,jT) e Ty jT)T (3.1)

The mean test statistic (2.4) can be written as

I7:] = ¢,7 4, (3.2)
where
I, I, I,
1 I
A=gp| Lo Lo o L (3.3)
i 4o

n

where I, is the n-dimensional identity matrix. Let us denote

¢, k)= (4", )" (3-4)

The correlation test statistics (2.9) and (2.11) can be written as

c(4, k)= ¢(J, kYT BY(j, k)$(j, k) (3.5)
and
c(j, k)=¢(j, k)T B4, k) (3.6)
where
B(‘}')(j, k)= D(‘}')(j’ ]C)BD(‘}')T(J" k) (3‘7)
V(j, kya™ 0,51 0,51
DY, k)= 01 V{j, k)ar) ... 0,51 (3.8)
Opxl Opxl V(J: ]C)a(‘}')
1 liOMXM J ]
B=— (3.9)
2
M J Oﬂlxﬂl
and
1 1 1
J=1 1 1 1 1 3.10
=Ly—g|1 1 - (3.10)
’ 11 1

The covariance test statistics (2.14) and (2.16) can be written as

0,-(7)=¢,~T Gj(w ¢j (3.11)
and
cj=¢;" G¢; (3.12)
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where .
G, =D,;" GD;T (3.13)
Via® 0,0 oo P04y
D, = Op.><1 Vja.z(Y’ B (3.14)
Opsa Opxr V,a®
and
a=Ly (3.15)
=3 .

Equations (3.2), (3.5), (3.6), (3.11) and (3.12) specify, respectively, the mean,
correlation and covariance test statistics as quadratic forms in the normal
vectors ¢; and ¢(j, k). Such forms have been treated extensively in the
statistical literature (e.g. Graybill 1976). It has been shown (Imhoff, 1961)
that the characteristic function for the distribution of a quadratic form xT A4z,
where x~ N (m, Z) and A is symmetric, is given by

ﬁ 1 — 25 0,8) V2% exp < ¢ ZM (3.16)
oo ) 1— 2,04 '

E=1
where ) is the kth eigenvalue of £1/24 312, h, is its multiplicity and 8, is given by
8 =2,TE12m (3.17)

where p, is the kth eigenvector of ZV24XV2, A numerical technique for
computing the distribution from the characteristic function has been suggested
by Imhoff (1961), along with an approximation technique.

In order to define the critical regions for the tests, it is necessary to deter-
mine the test statistics distributions for the mismatched combination (39, M1)
(i.e. the distributions induced by the residuals of the filter matched to M!
when the model M°is correct). In order to find the tests’ power for a specified
alternative model M2, it is necessary to find the distributions corresponding to
the mismatched combination (M2, #M!). Since the test statistics are now given
as quadratic forms in ¢; and (3, k), it remains to specify the mean and covari-
ance of these normal vectors for the two mismatched combinations. The
mean values are given by

Equ':mjl: (ml,le, mz,le, caey mM,le)T l=0, 2 (3.18)

EdYj, k)= (m;™™, myIT)T 1=0,2 (3.19)
The covariance of ¢;'is given by the blocks

Pj,al a::B

(cov ), p= {=0,2 (3.20)
0 a#B



196 ' Y. Baram

The covariance of ¢%(j, k) is given by ~
Ut Uil
cov @!(j, k)= [=0,2 (3.21)
Ut U
where
Ujt=cov ¢;! 1=0,2 (3.22)
and
CHj, k) a=p
Us,6ap= 1=0,2 (3.23)
0 a# B

4. Conclusion

The problem of model validation using residuals obtained from a mis-
matched filter differs from the classical model validation problem in that the
residuals are non-zero mean, non-stationary and correlated even when the model
to be validated is correct. In this paper we have presented a method for solv-
ing this problem, using multiple data records. Mean, covariance and correlation
tests on cross-record sections of the data were defined. Projecting the resi-
duals onto the principal directions of the covariance and correlation matrices
provides a meaningful way of transforming the matrix-valued information
into scalar statistics. The test statistics distributions were derived for com-
puting critical regions for the tests, and for computing the tests’ power for
specified model alternatives.

Appendix
The distribution of mismatched filler residuals for linear state-space models

Let M° denote a model for the observation sequence (y;), i=1,2,..., N
and let M be the model used in the filter. We are interested in the probability
distribution of the filter’s residuals. Here we derived the distribution for the
mismatched combination (M9 #1'). The distribution for the alternative
(M2, M1) required for test power computation purposes can be derived in the
same manner, replacing the index 0 by 2. Consider the linear state-space
model

X = Fa;+ Gaw; (A1)
y;=Hu;+v; (A 2)
where x, is normally distributed with
E{xy}=m, (A 3)
E{(xg—mg)(@g—my)T} =", (A 4)

and where w; and v; are uncorrelated and mutually uncorrelated normal
sequences with

E{w;y=m,, ; (A 5)
E{(w;—my, ;)(w;—my, ;)" } = Q; (4 6)
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E{vj} =My, ;
E{(vi - mr.j)(vj - mv,J')T} = RJ’

the mismatched filter residuals 7,0 are generated by the equations

where

?
it

.

,-

K% is obtained from

Ky

| FAKMHS FMI-K) Hil):|

Qe 0 0
L 0 GJ'1 ﬁ'j1 KJ'l

[HP—H}

— ZjO HjOT (HjO z]_O HjO’l‘ + RjO)—l

where X is obtained recursively from

initialized by

Also let

Z

0 — FJO(]_KJO HJ')ZJ'O'F]'OT'*'Q‘,'O
2"00 = ‘/’0
e o0 o
g=]0 @' o
0 0 R

~.
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The residual mean is then .

i=1 N
m;=H,0(j, 0)& + 1, k; 0(j, k)Gkak (A 23)

where ©(j, k) is the transition matrix corresponding to #;. To obtain the
residual covariance function let

¥, = cov (&) (A 24)

i)

¥ is computed by the recursion

¥, =F; %, Fio+ GQ,G (A 25)
initialized at
. T o
¥, = (A 26)
0 0 ’

Then the residual covariance function is given by

P, B ~ i=k
C(j, k)= B;¥,07(j, /H,™ j<k (A 27)
B0k, HTHT >k
where
Py=H ¥ AT+ RP (A 28)
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